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ABSTRACT

As transistors decrease in size much more of them can be embedded in a one chip, , so increasing chip
computational features. Anyhow , transistors will not take so less size than the required size. current size. The
technique of QCA denotes is the one method of many reliable solutions to achieve this limited physical size . the
implementation of logic modules of QCA will not correct. In this concept, the postulated new adder that operated in
all states of art competitors and reaching goals of best in chip size. these advantages are taken by with over all area
same to the cheaper implement of known literature. The 128 - bit version of the novel adder achieves the best area -
delay tradeoff.
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I. INTRODUCTION
Nanotechnology draws much attention from the public now-a-days. Because the current silicon transistor technology
faces challenging problems, such as high power consumption and difficulties in feature size reduction, alternative
technologies are sought from researchers. Quantum-dot cellular automata (QCA) is one of the promising future
solutions. Since it was first introduced in 1993, experimental devices for semiconductor, molecular, and magnetic
approaches have been developed. Quantum dot cellular automata, which is an array of coupled quantum dots to
implement Boolean logic functions. The advantage of QCA is high packing densities due to the small size of the
dots, simplified interconnection and low area delay product.

1. Adders
In electronics, an adder or summer is a digital circuit that performs addition of numbers. In many computers and
other kinds of processors, adders are used not only in the arithmetic logic unit(s), but also in other parts of the
processor, where they are used to calculate addresses, table indices, and similar operations. Although adders can be
constructed for many numerical representations, such as binary-coded, decimal or excess-3, the most common
adders operate on binary numbers. In cases where two's complement or ones' complement is being used to represent
negative numbers, it is trivial to modify an adder into an adder subtract or. Other signed number representations
require a more complex adder. Adders are fundamental circuits for most digital systems and several adder designs in
QCA have been proposed, and a performance comparison was improved. Better adder performance depends on
minimizing the carry propagation delay and reducing the area.

2. Quantum dot Cell
In 1993, Lent et al. proposed a physical implementation of an automaton using quantum dot cells. The automaton
quickly gained popularity and it was first fabricated in 1997. Lent combined the discrete nature of both cellular
automata and quantum mechanics, to create nano-scale devices capable of performing computation at very high
switching speeds and consuming extremely small amounts of electrical power. Today, standard solid state QCA cell
design considers the distance between quantum dots to be about 20 nm, and a distance between cells of about 60 nm.
Quantum dot Cellular Automata are based on the simple interaction rules between cells placed on a grid. A QCA
cell is constructed from four quantum dots arranged in a square pattern. These quantum dots are sites electrons can
occupy by tunneling to them. Because of Columbic repulsion, the two electrons will always reside in opposite
corners. The locations of the electrons in the cell (also named polarizations P) determine two possible stable states
that can be associated to the binary states 1 and 0. Although adjacent cells interact through electrostatic forces and
tend to align their polarizations, QCA cells do not have intrinsic data flow directionality.
The basic QCA cell consists of four quantum dots in a square array coupled by tunnel barriers. The physical
mechanism for interaction between dots is the Coulomb interaction and the quantum-mechanical tunneling.
Electrons are able to tunnel between the dots, but they cannot leave the cell. If two mobile electrons are placed in the
cell, in the ground state and in the absence of external electrostatic influence, Coulomb repulsion will force the
electrons to dots on the opposite corners.
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The Figure 1 shows a simplified diagram of a quantum-dot cell. If the cell is charged with two electrons, each free
electron to tunnel to any site in the cell, these electrons will try to occupy the furthest possible site with respect to
each other due to mutual electrostatic repulsion. Therefore, two distinguishable cell states exist. Figure 2 shows the
two possible minimum energy states of a quantum dot cell. The state of a cell is called its polarization, denoted as P.
Although arbitrarily chosen, using cell polarization P = -1 to represent logic “0” and P = +1 to represent logic “1”
has become standard practice.

Fig 1: Simplified Diagram of QCA Cell

Fig 2: Four Dot Quantum Cell
II. BACKGROUND
A QCA is a nanostructure having as its basic cell a square four quantum dots structure charged with two free
electrons able to tunnel through the dots within the cell [1]. Because of Columbic repulsion, the two electrons will
always reside in opposite corners. The locations of the electrons in the cell (also named polarizations P) determine
two possible stable states that can be associated to the binary states 1 and 0. Although adjacent cells interact through
electrostatic forces and tend to align their polarizations, QCA cells do not have intrinsic data flow directionality. To
achieve controllable data directions, the cells within a QCA design are partitioned into the so-called clock zones that
are progressively associated to four clock signals, each phase shifted by 90°. This clock scheme, named the zone
clocking scheme, makes the QCA designs intrinsically pipelined, as each clock zone behaves like a D-latch

Fig. 3. Novel 2-bit basic module
.
QCA cells are used for both logic structures and interconnections that can exploit either the coplanar cross or the
bridge technique The fundamental logic gates inherently available within the QCA technology are the inverter and
the MG. Given three inputs a, b, and c, the MG performs the logic function reported in (1) provided that all input
cells are associated to the same clock signal clk x (with x ranging from 0 to 3), whereas the remaining cells of the
MG are associated to the clock signal clkx+1
M(abc) = a · b + a · c + b · c. (1)

Several designs of adders in QCA exist in literature. The RCA and the CFA process n-bit operands by cascading
n full-adders (FAs). Even though these addition circuits use different topologies of the generic FA, they have a
carry-in to carry-out path consisting of one MG, and a carry-in to sum bit path containing two MGs plus one inverter.
As a consequence, the worst case computational paths of the n-bit RCA and the n-bit CFA consist of (n+2) MGs and
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one inverter. A CLA architecture formed by 4-bit slices was also presented in . In particular, the auxiliary propagate
and generate signals, namely pi = ai + bi and gi = ai · bi , are computed for each bit of the operands and then they
are grouped four by four. Such a designed n-bit CLA has a computational path composed of 7 + 4 × (log4 n)
cascaded MGs and one inverter. This can be easily verified by observing that, given the propagate and generate
signals (for which only one MG is required), to compute grouped propagate and grouped generate signals; four
cascaded MGs are introduced in the computational path. In addition, to compute the carry signals, one level of the
CLA logic is required for each factor of four in the operands word-length. This means that, to process n-bit addends,
log4 n levels of CLA logic are required, each contributing to the computational path with four cascaded MGs.
Finally, the computation of sum bits introduces two further cascaded MGs and one inverter.
The parallel-prefix BKA demonstrated in [13] exploits more efficient basic CLA logic structures. As its main
advantage over the previously described adders, the BKA can achieve lower computational delay. When n-bit
operands are processed, its worst case computational path consists of 4 × log2 n − 3 cascaded MGs and one inverter.
Apart from the level required to compute propagate and generate signals, the prefix tree consists of 2 × log2n −2
stages. From the logic equations provided in [13], it can be easily verified that the first stage of the tree introduces in
the computational path just one MG; the last stage of the tree contributes with only one MG; whereas, the
intermediate stages introduce in the critical path two cascaded MGs each. Finally, for the computation of the sum
bits, further two cascaded MGs and one inverter are added.

Fig. 4. Novel n-bit adder (a) carry chain and (b) sum block.

With the main objective of trading off area and delay, the hybrid adder (HYBA) described in [14] combines a
parallel-prefix adder with the RCA. In the presence of n-bit operands, this architecture has a worst computational
path consisting of 2×log2 n +2 cascaded MGs and one inverter. When the methodology recently proposed in [15]
was exploited, the worst case path of the CLA is reduced to 4 × _log4 n_ + 2 × _log4 n_ − 1 MGs and one inverter.
The above-mentioned approach can be applied also to design the BKA. In this case the overall area is reduced with
respect to [13], but maintaining the same computational path. By applying the decomposition method demonstrated
in [16], the computational paths of the CLA and the CFA are reduced to 7 + 2×log2(n/8) MGs and one inverter and
to (n/2)+ 3 MGs and one inverter, respectively.

III. NOVEL QCA ADDER
To introduce the novel architecture proposed for implementing ripple adders in QCA, let consider two n-bit addends
A = an−1, . . . , a0 and B = bn−1, . . . , b0 and suppose that for the ith bit position (with i = n − 1, . . . , 0) the
auxiliary propagate and generate signals, namely pi = ai + bi and gi = ai · bi , are computed. ci being the carry
produced at the generic (i−1)th bit position, the carry signal ci+2, furnished at the (i+1)th bit position, can be
computed using the conventional CLA logic reported in (2). The latter can be rewritten as given in (3), by exploiting
Theorems 1 and 2 demonstrated in [15]. In this way, the RCA action, needed to propagate the carry ci through the
two subsequent bit positions, requires only one MG. Conversely, conventional circuits operating in the RCA fashion,
namely the RCA and the CFA, require two cascaded MGs to perform the same operation. In other words, an RCA
adder designed as proposed has a worst case path almost halved with respect to the conventional RCA and
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CFA. Equation (3) is exploited in the design of the novel 2-bit module shown in Fig. 1 that also shows the
computation of the carry ci+1 = M(pi gi ci ). The proposed n-bit adder is then implemented by cascading n/2 2-bit
modules as shown in Fig. 2(a). Having assumed that the carry-in of the adder is cin = 0, the signal p0 is not required
and the 2-bit module used at the least significant bit position is simplified. The sum bits are finally computed as
shown in Fig. 2(b). It must be noted that the time critical addition is performed when a carry is generated at the least
significant bit position (i.e., g0 = 1) and then it is propagated through the subsequent bit positions to the most
significant one. In this case, the first 2-bit module computes c2, contributing to the worst case computational path
with two cascaded MGs. The subsequent 2-bit modules contribute with only one MG each, thus introducing a total
number of cascaded MGs equal to (n − 2)/2. Considering that further two MGs and one inverter are required to
compute the sum bits, the worst case path of the novel adder consists of (n/2) + 3 MGs and one inverter
ci+2 = gi+1 + pi+1 · gi + pi+1 · pi · ci (2)
ci+2 = M(M _ai+1, bi+1, gi M _ai+1, bi+1, pi ci ). (3)

1. Logic gates
The logic elements of QCA are an inverter and majority gate. An inverter is designed by positioning cells diagonally
from each other to achieve the inversion functionality. A majority gate consists of five QCA cells that realize the
function of M(a; b; c) = ab + bc + ac. Two-input AND gate and OR gates can be designed by fixing one of the
majority gate inputs to ”0” and ”1”, respectively shown as follows.
AND = M(a,b,0)
OR = M(a,b,1)
If one input is set to 0, then the output is the AND of the other two inputs. If one input is set to 1, then the output is
the OR of the other two inputs. With ANDs, ORs, and inverters, any logic function can be realized.
Carry-look ahead is arguably the most important technique in the design of fast adders, especially large ones. In
straightforward addition, e.g. in a ripple adder, the operational time is limited by the (worst-case) time allowed for
the propagation of carries and is proportional to the number of bits added. So faster adders can be obtained by
devising a way to determine carries before they are required to form the sum bits. Carry-lookahead does just this,
and, in certain cases the resulting adders have an operational time that is independent of the operands' word-length.
A carry, Ci, is produced at bit-stage i if either one is generated at that stage or if one is propagated from the
preceding stage. So a carry is generated if both operand bits are 1, and an incoming carry is propagated if one of the
operand bits is 1 and the other is 0. Let Pi and Gi denote the generation and propagation, respectively, of a carry at
stage i, Ai and Bi denote the two operands bits at that stage, and Ci-1 denote the carry into the stage. Then we have
Gi=AiBi
Pi = Ai^Bi
Ci = Gi + PiCi-1
and the sum can be written as Si== Pi^Ci-1 which allows the use of shared logic to produce Si and Pi.
C0 = G0 + P0Ci-1
C1 = G1 + P1P0C-1+ P1G0
.
.
.
Ci = Gi + Pi-1Gi-1+PiPi-1Gi-2+…+PiPi-1Pi-2…P0C-1

where Ci-1 is the carry into the adder. The equation for Ci states that there is a carry from stage i if there is a carry
generated at stage i, or if there is a carry that is generated at stage i-1 and propagated through stage i or if , or if the
initial carry-in, Ci-1, is propagated through stages 0,1,… i. The complete set, of equations show that, in theory at
least, all the carries can be determined independently, in parallel, and in a time (three gate delays) that is
independent of the number of bits to be added. The same is also therefore true for all the sum bits, which require
only one additional gate delay.
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Fig 5: Generation of propagate and generate bits

Gi = AiBi
Pi = Ai^Bi

Compared with a ripple adder, as well as some of the other adders, a pure carry-look ahead adder has high logic
costs. Furthermore, high fan-in and fan-out requirements can be problematic: the fan-out required of the Gi and Pi
signals grows rapidly with n, as does the fan-in required to form Ci. For sufficiently large values of n, the high fan-
in and fan-out requirements will result in low performance, high cost, or designs that simply cannot be realized.

Fig 6: Carry block

This carry block is cascaded with the propagate and generate block. So, that carry is obtained with the following
equation.
Ci = Gi + PiCi-1

Fig 7: Sum block

This sum block is cascaded with the above carry block to obtain the sum. The following equation gives the sum bit
Si = Pi ^ Ci-1.
The following shows the carry block which generate the carry bits.
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Fig8: Carry block

Fig 9: Sum block

The above carry block is cascaded with the sum block which generate the sum bits. The following are the equations
for the carry bits and the sum bits.
Ci+2= M(M(ai+1,bi+1,gi)M(ai+1,bi+1,pi)ci)
For sum block:
For odd
Sj+1=M(~Cj+3M(aj+2,~Cj+3,bj+2),Cj+2)
For even
Sj+2=M(~Cj+3M(Pj+2,~Cj+3,Gj+2),Cj+2)

IV. RESULTS
The proposed addition architecture is implemented for several operands word lengths using the QCA Designer tool
adopting the same rules and simulation settings used in [11]–[16]. The QCA cells are 18-nm wide and 18-nm high;
the cells are placed on a grid with a cell center-to-center distance of 20 nm; there is at least one cell spacing between
adjacent wires; the quantum-dot diameter is 5 nm; the multilayer wire crossing structure is exploited; a maximum of
16 cascaded cells and a minimum of two cascaded cells per clock zone are assumed. Layouts for the 16-, 32- and
64-bit versions of the novel adder are shown in Figs. 3–5, respectively. Simulation results for the 64-bit adder is
shown in Fig. 6. There, the carry out bit is included in the output sum bus. Because of the limited QCA Designer
graphical capability, input and output busses are split into two separate more significant and less significant busses.
Fig. 6 also shows the polarization values of few single output signals (i.e., sum64, sum32, sum31, and sum).
Simulations performed on 32- and 64-bit adders have shown that the first valid result is outputted after five and nine
latency clock cycles, respectively.
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Fig. simulation result of qca 128 bit

Fig. simulation result of qca 64 bit

Fig. simulation result of qca 32 bit

Fig. simulation result of qca 16 bit

Fig. simulation result of qca 8 bit

Fig. 10. Simulation results obtained for the novel 64-bit adder.
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V. CONCLUSION
A new adder designed in QCA was presented. It achieved speed performances higher than all the existing QCA
adders, with an area requirement comparable with the cheap RCA and CFA demonstrated in [13] and [16]. The
novel adder operated in the RCA fashion, but it could propagate a carry signal through a number of cascaded MGs
significantly lower than conventional RCA adders. In addition, because of the adopted basic logic and layout
strategy, the number of clock cycles required for completing the elaboration was limited. A 64-bit binary adder
designed as described in this brief exhibited a delay of only nine clock cycles, occupied an active area of 18.72 μm2,
and achieved an ADP of only 168.48.
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